

GT PV flottant

Sécurité des parcs PV flottants

27 Novembre 2025 – Pont de Claix Laboratoire Artelab

Programme

Mot d'accueil

- Tenerrdis, Valentin MAILLOT
- Artelia, Pierre-Etienne LOISEL

Séquence: Les actions de filière

- Présentation du projet CINOV <u>ARaymond Energies</u>, Quentin RABUT
- REX du GT "Impact du PV flottant sur la sécurité des barrages" CFBR, Gaëtan DAUTOIS

Séquence Technologies

- Modélisation et dimensionnement des ancrages Ciel & Terre, Vincent PINCHOU
- Les différents types d'ancrages et installation sur site Alt'Ancre, François CHEVALIER
- Capteurs de tension des lignes d'ancrage <u>Kapteva</u>, Jay BOARDMAN

Séquence REX de projets d'innovation

Monitoring des parcs PV flottants - <u>OWC</u> (ex-Innosea), Benoat DANGLADE

Séquence Compétences

Compétences à développer pour les spécificités des projets flottants - CEA INES, Antoine DIZIER

Séquence Témoignages

• Assurer un parc PV flottant - Howden, Selda GOGCE

Atelier réseau Tenerrdis Groupe de travail - Sécurité des parcs PV flottants

CINOV-ENR

ARTELAB, un outil de modélisation aux capacités augmentées

27/11/2025

La présentation

- 1. Le Laboratoire d'Hydraulique ARTELIA : ArteLAB
- 2. Le projet CINOV-ENR, avec l'appui de TENNERDIS
- 3. Le développement du laboratoire ArteLAB
- 4. L'ouverture aux opportunités de partenariat

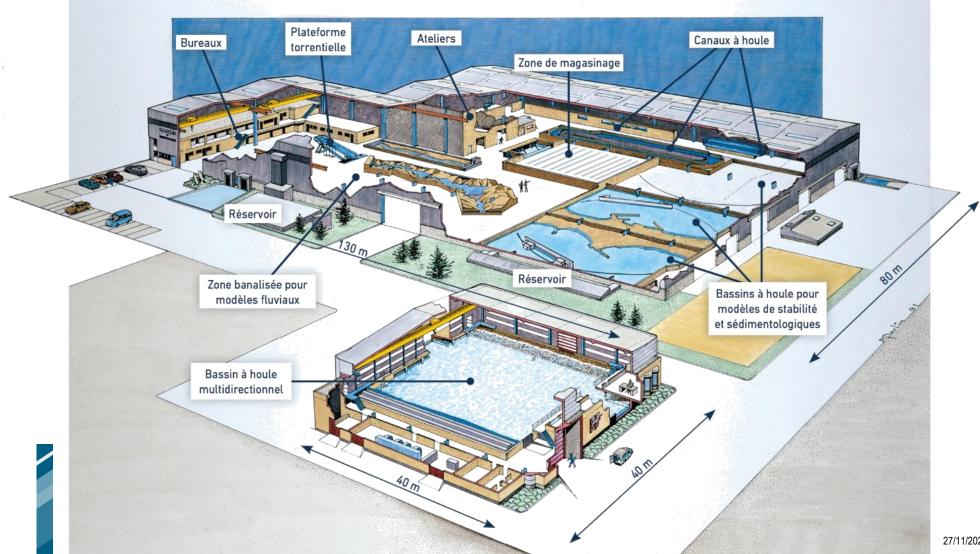
▶ 100 ans d'expérience

▶ 15 à 25 modèles par an

1. Le laboratoire d'hydraulique Artelab

Un siècle de modélisation

- **1917**: Création du Laboratoire Dauphinois d'Hydraulique (Neyret Beylier, Essor de la Houille Blanche)
- 1923: 1^{er} modèle physique fluvial à fonds fixes
- 1934: 1^{er} modèle physique fluvial à fonds mobiles
- 1940: 1^{er} modèle maritime (agitation et stabilité)
- Projets de centrales hydroélectriques et de barrages,
- Réseaux d'irrigation pour le développement rural,
- Aménagements et cours d'eau et milieux maritimes
- Infrastructures d'eau et d'assainissement



1. Le laboratoire d'hydraulique Artelab

11 000 m² de halls d'essais

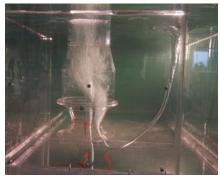
1. Le laboratoire d'hydraulique Artelab

Les grands domaines d'intervention du labo

Prises d'eau et rejets Evacuateurs de crues Affouillements au pied des structures Sédimentation dans les retenues Cheminées d'équilibre

Ouvrages maritimes & portuaires / Aménagements littoraux & estuariens

Digues à talus / Structures verticales Amarrage des structures flottantes Affouillements **Protections littorales** Morphodynamique des zones côtières et estuariennes



Ecluses Ouvrages en rivières Plages de dépôts Sédimentation dans les rivières Affouillements au pied des structures Prises d'eau et rejets

Ecoulements Urbains & Industriels

Stations de pompage Ouvrages de répartition de débit Puits de chute Réseaux urbains Prises d'eau et rejets

1. Le laboratoire d'hydraulique Artelab

Les grands domaines d'intervention du labo

Hydraulique « pure » (courants et ondes)

- Ecoulements tridimensionnels (courantologie, vortex, trajectoires de jets, ondes de choc, coudes, divergence, etc..)
- Pertes de charge complexes (écluses, décharge, réseau d'assainissement)
- Interactions air / eau : puits de chute, vortex, jet plongeant, etc
- Ondes = phénomènes transitoires (éclusées, intumescence)

Hydraulique et sédiments

- Torrents & Rivières, Retenues de barrage
- Risque de dépôt / Risque d'affouillement
- Efficacité de chasses hydrauliques

Hydraulique et structures

- Efforts / pressions sur le GC, dans les ancrages
- Stabilité d'ouvrages mobiles
- Comportement des structures flottantes
- Définition de formes compatibles Hydraulique/GC

Tenerrdis Auvergne-Rhône-Alpes

2. Le projet CINOV-ENR, porté par ARTELIA

Le projet :

Développer des offres au service de la Filière régionale ENR – Hydraulique sur les

4 métiers:

- Hydroliennes,
- PV Flottant,
- Jumeau numérique d'un barrage,
- Petite Hydro-électricité

Temporalité : 2020-2025

Budget : 3.6 M€

Financement partiel par le Programme PIA3 (Région AURA)

Appui TENERRDIS:

- Compréhension du PIA3 / Aide au montage du dossier
- Appuis à l'identification des partenaires pertinents
- Labélisation Tenerrdis et Indura
- Accompagnement pendant le projet, pour le suivi et la promotion

3. Le développement d'Artelab : La composante bâtiment

Un vaste programme d'investissement de 2 M€ porté à 100% par Artelia pour valoriser et dynamiser l'un de ses atouts : son laboratoire d'hydraulique

- Aménagement des espaces et création d'une zone d'accueil Clients et Partenaires
- Mise en conformité des installations : électricité, sécurité incendie, portes industrielles
- Amélioration des conditions de travail : chauffage, ventilation, éclairage
- Mise en sécurité et mise aux normes de l'environnement extérieur : VRD, clôtures, assainissement EP,

2. Le développement d'Artelab : La composante métiers

Des investissements ciblés permettant de faire progresser et augmenter les capacités du labo au service des acteurs du PV Flottant

De nouveaux équipements de mesure pour les études de houle spécifiques sur le PV Flottant

- Des outils de mesure de mouvement pour les flotteurs des PV → caméras Qualisys
- Des outils de mesure des efforts dans les liaisons et amarrages des flotteurs → balances d'efforts 6 composantes de faible encombrement

De nouvelles installations pour les études de houle spécifiques sur le PV Flottant

- Un bassin à houle dédié de caractéristiques spécifiques (hauteur d'eau 1000mm)
- Un générateur modulaire multidirectionnel à absorption active
- Un nouveau vérin électrique pour le canal à houle

4. L'ouverture aux opportunités de partenariat!

@Entreprises, @Formations (Université/Ecole/professionnelles) @Instituts de recherche: Le labo au service de vos expérimentations

Mise à disposition de nos installations, nos moyens matériels, nos compétences, pour tester des dispositifs expérimentaux autres qu'hydrauliques.

> Grande dalle extérieure béton **Ateliers**

Air comprimé Alimentation en eau

Ponts roulants 15 tonnes

Bassins et Canaux débit 400 l/s

Hauteur sous plafond 10m

Expériences récentes

Electricité 380V

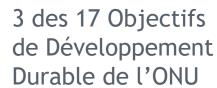
- Test d'asperseur pour irrigation
- Banc d'essai pour clapet élastomère
- Banc d'essai pour un dispositif de ripage dans le cadre du projet ITER
- Dispositif d'étanchéité des portes d'écluse

www.arteliagroup.com

Il s'inscrit dans le cadre du programme PIA3 régionalisé pour renforcer la compétitivité des filières locales en mobilisant des entreprises autour d'un projet à finalité économique.

Objectifs principaux:

- → Créer des offres de services innovantes pour la filière ENR-hydraulique, avec un modèle économique viable sous 3 ans.
- → S'appuyer sur les capacités de modélisation physique et numérique (notamment celles d'Artelia à Grenoble) pour l'eau et les énergies renouvelables.



à propos d'ARaymond

EXPERT
INTERNATIONAL
EN SOLUTIONS
DE FIXATION,
D'ASSEMBLAGE
ET DE GESTION
DES FLUIDES

8 000+ collaborateurs

1,5 milliard € \$ de chiffre d'affaires en 2024

28 sites de production

25 pays

1865

Entreprise 100 % familiale fondée en 1865

2 500 brevets actifs

du chiffre d'affaires investi en R&D

Rendre la **mobilité** sûre et durable

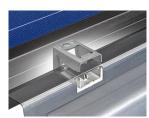
Innover pour la **santé**

Accélérer la transition énergétique

Industrialiser la **construction**

Rendre l'horticulture plus verte

ARaymond Energies


Solutions de fixation pour panneaux photovoltaïques, systèmes de mise à la terre et cheminement de câbles.

Nous concevons des solutions performantes qui sécurisent et rendent l'assemblage et l'installation de panneaux photovoltaïques plus rapides, plus faciles.

Nos solutions contribuent à réduire le coût global d'accès à l'énergie renouvelable pour nos clients.

Un nouveau standard de solaire flottant clé-en-main, modulaire et durable.

FloatSystem

MobileFactory

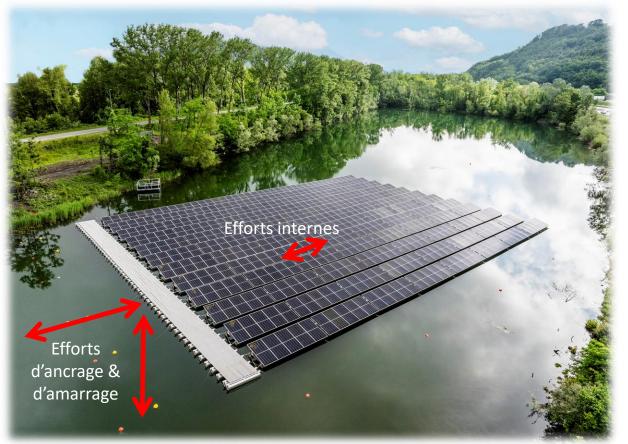
Allaymond*

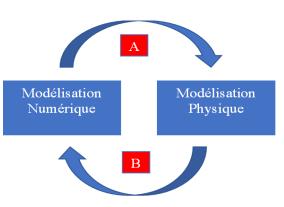
FULL PARTNERSHIP APPROACH

Services

ARaymond

Enjeux : Qualification des structures flottantes et de leurs systèmes d'amarrage





Modélisation hybride numérique/physique du comportement de la ferme FPV

Que permet la modélisation numérique ?

Permet de quantifier les efforts dans des conditions extrêmes de fonctionnement, à travers la simulation de nombreux cas de charge et pour différentes configurations du système de flotteur.

Permet de réaliser des essais de fatigue

Que permet la modélisation physique?

Permet de valider la conception technique d'un équipement

Permet de reproduire les efforts et les mouvements d'éléments représentatifs du dispositif constitués de flotteurs

Permet d'ajuster les paramètres de la modélisation numérique grâce aux mesures des efforts et des déplacements qui sont réalisées

Etape 1 : Modélisation numérique de la structure flottante à l'échelle 1

Résultats attendus :

- Disposer d'une modélisation numérique du système flottant [Complet]
- Définir les ordres de grandeur des efforts à mesurer

Données utiles et nécessaires pour la modélisation Physique du modèle réduit :

Les ordres de grandeur des efforts (amarrage, ancrage et liaisons internes) à mesurer permet de définir les appareils de mesures d'effort (balances).

Etape 2 : Modélisation physique de la structure flottante réduite (échelle 1/3)

Résultats attendus : Disposer d'un modèle réduit d'un échantillon le plus représentatif possible de la structure existante.

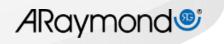
Le choix à la fois du nombre et de la localisation des flotteurs à modéliser a fait l'objet d'une

étude approfondie.

Méthodologie

Etape 3 : Test en laboratoire d'un modèle physique d'un échantillon de flotteur

Résultats attendus : Mesurer les efforts / visualiser et mesurer les déplacements


Permettra de calibrer le modèle numérique

Ne peut se faire directement (pas possible d'utiliser les résultats bruts pour les appliquer au modèle numérique à l'échelle 1 = > Obligation de passer par une étape intermédiaire)

Méthodologie

Etape 4: Modélisation numérique de l'échantillon de flotteurs pour calibrage des paramètres du modèle numérique sur les mesures du modèle physique

Résultats attendus : Comparer et ainsi calibrer le modèle numérique en fonction des résultats mesurés en laboratoire sur le modèle physique de l'échantillon de flotteurs

Disposer d'un modèle numérique de l'échantillon de flotteurs calibré et fiable

Etape 5 : Ajustement des paramètres du modèle numérique [Complet]

Disposer d'un modèle numérique [complet] calibré et fiable

Etape 6 : Effectuer des modélisations numériques extrêmes

Résultats attendus : Simuler des conditions extrêmes (impossible à réaliser sur le modèle physique réduit) en disposant d'un modèle numérique calibré et fiable

Définition de l'offre de services ARTELIA

Objectif des Offres de service

Mise à disposition d'outils de modélisation hybride numérique/physique du comportement de la ferme PV flottante ancrée/amarrée

Tout développeur de solution de PV

Flottant

OFFRE DE SERVICE « PV FLOTTANT » ARTELIA Modélisation numérique

Et / ou Modélisation

Et / ou Formation

Et / ou

Conversion des données de vent en données de vagues (accès aux données météorologiques)

MERCI!

«CINOV-ENR» est un projet cofinancé par

la Région Auvergne-Rhône-Alpes et le Ministère de l'Economie et des Finances sous les conventions n° DOS0161926/00, DOS0161927/00, DOS0161929/00 et DOS0161928/00.

GT CFBR PV flottant (FPV) sur retenues de barrages REX et premiers résultats

Gaëtan DAUTOIS (ARTELIA)

Laurent PEYRAS (INRAE)

Nicolas GERARD (EDF)
Nicolas NERINCX (DN&T/ISL)

Sommaire

- 1. Exigences de sécurité pour les barrages
- 2. Les objectifs et sujets traités par le groupe de travail « PV Flottant »
- 3. Phase 1 : Retour d'expérience et recueil des données
- 4. Phase 2 : Guide de bonne pratique (en cours)

Exigences de sécurité pour les barrages

Corpus règlementaire

Code de l'Environnement - Articles R214-112 à R214-132

Dispositions communes relatives à la sécurité et à la sûreté des ouvrages hydrauliques autorisés, déclarés et concédés (Articles R214-112 à R214-117)

- Dispositions relatives à la sécurité et à la sûreté des ouvrages hydrauliques autorisés ou déclarés (Articles R214-118 à R214-128)
- Organismes agréés (Articles R214-129 à R214-132)

Des arrêtés qui cadrent les études réalisées sur les barrages classés

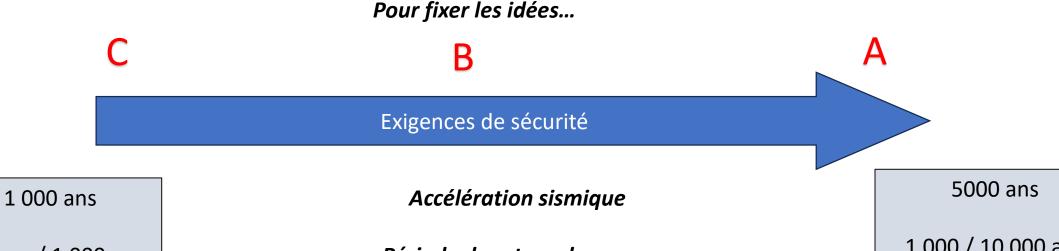
- Arrêté du 6 août 2018 : Prescriptions techniques relatives à la sécurité des barrages
- Arrêté du 3 septembre 2018 : Plan des études de dangers
- Arrêté du 8 août 2022 : Obligations documentaires et consistance des vérifications des ouvrages hydrauliques

Des recommandations techniques

 Comité Français des barrages et réservoirs : Stabilité des barrages, Dimensionnement des évacuateurs de crues, pratique de l'analyse des risques.

Exigences de sécurité pour les barrages

Mise en pratique des exigences règlementaires


CLASSE de l'ouvrage	CARACTÉRISTIQUES GÉOMÉTRIQUES
A	$H \ge 20 \text{ et } H^2 \times V^{0,5} \ge 1500$
В	Ouvrage non classé en A et pour lequel H \geq 10 et H ² x V ^{0,5} \geq 200
С	 a) Ouvrage non classé en A ou B et pour lequel H ≥ 5 et H² x V^{0,5} ≥ 20 b) Ouvrage pour lequel les conditions prévues au a ne sont pas satisfaites mais qui répond aux conditions cumulatives ci-après : i) H > 2; ii) V > 0,05; iii) Il existe une ou plusieurs habitations à l'aval du barrage, jusqu'à une distance par rapport à celui-ci de 400 mètres.

Dans les conditions normales d'exploitation du barrage, les risques liés à au fonctionnement du barrage sont pleinement maîtrisés.

En cas d'événement naturel exceptionnel, le barrage n'est pas à l'origine d'une libération incontrôlée et dangereuse de l'eau contenue dans la retenue.

Exigences de sécurité pour les barrages

Mise en pratique des exigences règlementaires

300 ans / 1 000 ans

5 ans / 5 ans

10⁻³ / an

Période de retour des crues

Fréquence des visites techniques / des rapports d'auscultation

Probabilité annuelle de défaillance maximum

1 000 / 10 000 ans

1 an / 2 ans

10⁻⁴ / an

+ Vent & vagues, poussée de la glace, sensibilité aux corps flottants, situations accidentelles, situations dangereuses identifiées par l'EDD

- Sujet 1. Le processus de développement d'une ferme PV flottante
- Sujet 2. Etat de l'art des technologies et techniques du PV flottant
- Sujet 3. Démarche d'analyse de risques et enjeux de sûreté pour les barrages

Les livrables de ce GT s'adressent à la profession des barrages (exploitants, BE, administration de contrôle) et à l'ingénierie des PV flottant

Phase 1 : Retour d'expérience et recueil des données (1 an - 2023 à 2024) : approuvé par la CE de juin 2024.

Phase 2 : Guide de bonne pratique (1,5 ans) – 2024 à 2026 : *en cours*

Composition du GT FPV

Animation GT	INRAE	Laurent PEYRAS
	EDF CIH	Nicolas GERARD
	DN&T	Nicolas NERINCX
BE - Ingénierie	ARTELIA	Gaëtan DAUTOIS
	BRLI	Nicolas FRAYSSE
	EDF CIH	Laurent DEL GATTO
	SCP	Yohann GRISARD
	TRACTEBEL	Samuel RENAUD
Administration	PoNSOH	Tarik OUSSALAH
	DREAL Occitanie	Guillaume CHANTELAUVE
Constructeurs PV	Sun'R Power - EFFAGE	Christopher QUINN
Développeurs PV	EDF - Renouvelables	Gaetan BAYART
	EDF - Renouvelables	Anthony DOLS
CFBR / ICOLD / EuCOLD	Comité T ICOLD	Luc DEROO
	CFBR	Anne CLUTIER
	Expert Indépendant	Jean-Jacques FRY

Les exigences de sécurité Doctrine DGPR « Eléments de doctrine sur les panneaux photovoltaïques – enjeux de sécurité des ouvrages hydrauliques » - Mars 2023

☐ Cas 1 qui concerne les défaillances intrinsèques à la centrale FPV :

La note de doctrine précise que l'autorité de contrôle émet un avis favorable à un projet de centrale FPV si la probabilité maximale de défaillance annuelle de la centrale FPV ne dépasse pas la probabilité indiquée dans le tableau ci-dessous :

Pour un barrage de classe :	Probabilité maximale de défaillance annuelle
	intrinsèque des panneaux photovoltaïques
	(pouvant engendrer des conséquences sur
	l'ouvrage)
A	10-⁴
В	3 x 10 ⁻⁴
С	10 ⁻³

En pratique comme on le verra plus tard dans le présent guide, il n'est pas possible de justifier ces probabilités, ce qui renvoie quasi-systématiquement au cas 2 suivant.

Les exigences de sécurité Doctrine DGPR « Eléments de doctrine sur les panneaux photovoltaïques – enjeux de sécurité des ouvrages hydrauliques » - Mars 2023

☐ Cas 2 qui concerne les scénarios globaux de défaillance de la centrale FPV et du barrage

La note de doctrine précise que l'autorité de contrôle émet un avis favorable à un projet de centrale FPV si la probabilité maximale de défaillance annuelle du barrage du fait de l'installation de la centrale FPV ne dépasse pas la probabilité indiquée dans le tableau ci-dessous :

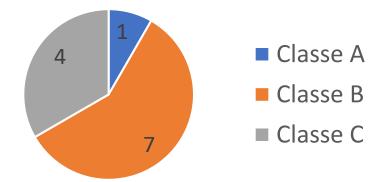
Pour un barrage de classe :	Probabilité maximale de défaillance annuelle du barrage du fait de la défaillance de l'installation photovoltaïque
Α	10-4
В	3 x 10 ⁻⁴
С	10 ⁻³

En pratique, les développeurs devront quasi-systématiquement se rapporter au cas 2 et apporter la démonstration dans leur dossier de demande d'autorisation d'une probabilité de défaillance annuelle du barrage du fait du projet de centrale FPV conforme à ces exigences.

Phase 1: Retour d'expérience et recueil des données 2023 à 2024 (1 an)

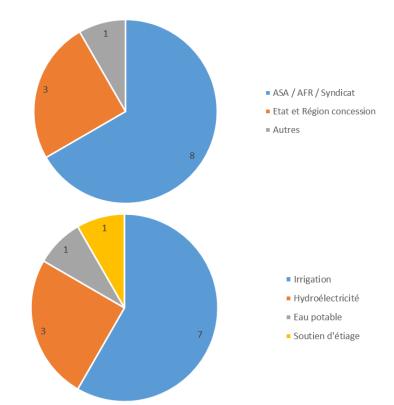
- Enquête sur un échantillon de 18 projets de centrale PV Flottantes (12 en France et 6 à l'international)
- → constitution d'une base de référence technique pour les travaux de la phase 2
- → organisation du guide de bonnes pratiques et des questions à traiter

- Rapport de 37 p., fichier Excel avec 109 champs renseignés
- Livrable phase 1 soumis à la CE en mars 2024 et approuvé en juin 2024
- Disponible sur l'espace membre CFBR Accueil > Groupes de travail > Groupes de travail CFBR > PV flottant



Phase 1: Typologie des projets PV Flottant

☐ Statut des projets


☐ Classe des barrages

Phase 1: Typologie des projets PV Flottant

☐ Gestionnaires des barrages

Usages des barrages

- ☐ Capacité installée en MWc : [3.7 ; 45] Moyenne 14.8
- ☐ Surface en PV [ha]: [2.1; 27.7] Moyenne 12.7

Phase 1: Processus de développement

- Autorisations administratives
 - L'autorisation environnementale
 - Code de l'urbanisme et permis de construire
- ☐ Propriété et exploitation des parcs : importance de la convention entre développeur et gestionnaire
- ☐ Autres REX : Suivi qualité de l'eau et sujets environnementaux, Opportunités liées au FPV

Phase 1: Technologies et techniques du PV Flottant

- ☐ Equipements : Technologies et techniques
 - Structures flottantes
 - Système d'ancrage
- ☐ Dimensionnement : pratiques et règles de l'art
 - Prise en compte des aléas naturels
 - Prise en compte des aléas externes : corps flottants
 - Risque incendie
- ☐ Surveillance en exploitation Maintenance
- ☐ REX et incidentologie
- ☐ Justifications produites dans le cadre de l'instruction de la conformité réglementaire

Phase 1: Analyse de risques et enjeux de sûreté pour les barrages

- ☐ Evaluation des risques intrinsèques aux centrales PV flottantes
- ☐ Prise en compte de l'environnement de la centrale PV dans l'analyse de risques
- Analyse de risques pour évaluer les projets
- ☐ Dispositifs spécifiques et maitrises et réduction des risques

Phase 2 : Guide de bonne pratique (1,5 ans) – 10/2024 au 12/2025

Chapitre 1 - Sécurité des ouvrages - Démarche d'analyse de risques et d'évaluation de la sûreté des barrages faisant l'objet d'un projet de centrale PV flottante

Chapitre 2 - Recommandations et niveaux de performances en termes de dimensionnement, dispositions constructives et suivi des systèmes d'ancrage

Chapitre 3 - Instruction du volet sécurité de l'autorisation environnementale (France)

Chapitre 1 : Analyse fonctionnelle Interne – Analyse structurelle des composants des centrales FPV

- 1. Modules solaires
- 2. Systèmes flottants : support des modules solaires, support des équipements électriques (supports de câbles flottants) et mécaniques (passerelles d'accès), flotteurs
- **3. Système d'ancrage et d'amarrage** : maintien en position du système flottant pour éviter la dérive
- 4. Système électrique : câbles et lignes d'acheminement de l'énergie produite, onduleurs, boîte de jonction (acheminement de l'énergie produite / séparation des chaines électriques), onduleurs (transformation CC/CA), transformateur (élévation tension en CA), dispositifs de comptage et de séparation du réseau électrique public
- **5. Système de supervision** : système de contrôle et d'acquisition de données : Supervisory Control And Data Acquisition ou SCADA
- **6. Système anti-intrusion** : Clôture ou autre système anti-intrusion
- 7. Accès à la centrale FPV : bateau ou barge, quai/rampe de mise à l'eau

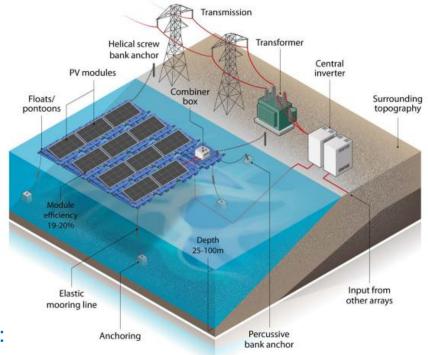


Figure 3. Schematic of an FPV system Image credit: Alfred Hicks, NREL

Chapitre 1 : Analyse fonctionnelle Externe – Aléas intervenant dans l'analyse de risque des centrales FPV

<u>Aléas majeurs</u>:

Aléa 1 : vent

Aléa 2 : vagues

Aléa 3 : courants

Aléa 4 : marnage, y compris vidange exceptionnelle

Aléa 5 : embâcles

Aléa 6 : accostage, navigation

Aléa 7: érosion, sédimentation

Aléas systématiques des études de dangers :

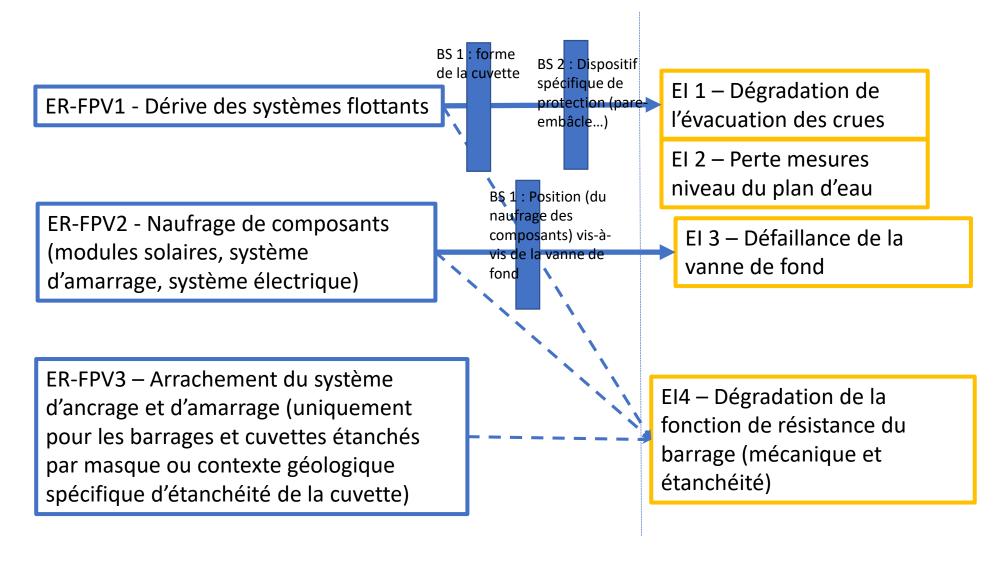
Aléa 8 : neige

Aléa 9 : foudre

Aléa 10 : gel

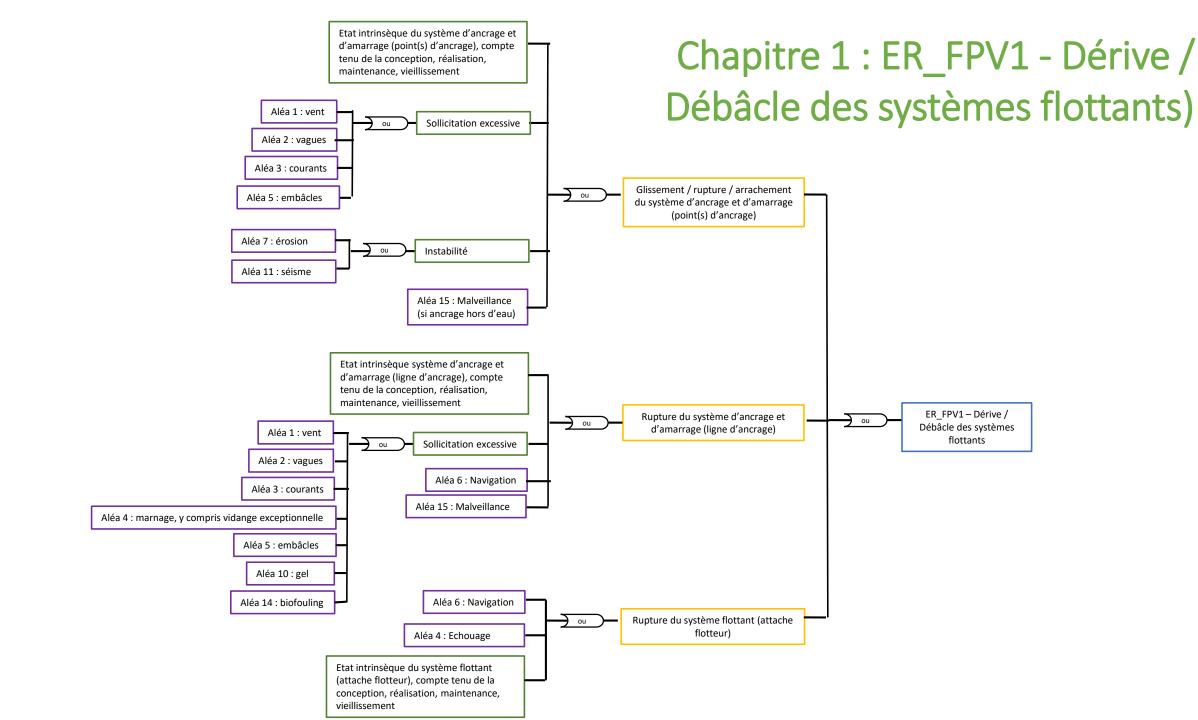
Aléa 11 : séisme

<u>Autres aléas à</u> <u>considérer</u> potentiellement : Aléa 12 : Incendie


Aléa 13 : faune (rongeurs...)

Aléa 14 : biofouling

Aléa 15: malveillance



Chapitre 1 : ER_FPV vers les El des barrages

ER-FPV (Centrale FPV)

El des ERCs barrage

CHAPITRE 2 : RECOMMANDATIONS ET NIVEAUX DE PERFORMANCES EN TERMES DE DIMENSIONNEMENT, DISPOSITIONS CONSTRUCTIVES ET SUIVI DES SYSTEMES D'ANCRAGE

3.1 Identification des caractéristiques fondamentales de la retenue

Géotechnique et géologie, stabilité des fonds et des berges, topographie, étanchéité, sédimentation, hydrologie et hydraulique, marnage, sensibilité de l'EVC aux corps flottants, position de la vidange et prises d'eau, localisation des systèmes d'auscultation, etc.

3.2 Caractérisation des aléas et normes associées

Vent, vagues, courant, marnage, embâcle, accostage/navigation, érosion, neige, foudre/incendie, gel, séisme, biofouling

3.3 Caractérisation des aléas et normes associées

Module PV, structures flottantes, points d'ancrage, systèmes de protection additionnel, câblage électrique, boite de jonction, onduleur, transformateur, poste de livraison, moyen d'accès, etc.

3.4 Conception générale de la centrale FPV

Compatibilité avec les usages du plan d'eau, Implantation en zone « morte », Ilots de forme simple, Distance en ilots, éloignement des berges, dispositions constructives vis-à-vis des OH, qualification des matériaux, etc.

CHAPITRE 2 : RECOMMANDATIONS ET NIVEAUX DE PERFORMANCES EN TERMES DE DIMENSIONNEMENT, DISPOSITIONS CONSTRUCTIVES ET SUIVI DES SYSTEMES D'ANCRAGE

3.5 Justification des systèmes flottants

Durée de vie, charges admissibles au niveau des points d'accroche, capacité à supporter l'échouage, qualification de la structure flottante assemblée

3.6 Justification du système d'ancrage

Combinaison de charge, Les méthodes de calculs

3.7 Construction de la centrale FPV

Qualification des ancrages, positionnement des points d'ancrage, ancrage temporaire

3.8 Inspection et maintenance de la centrale FPV

Système flottant, système d'ancrage

Pour approfondir, pour plus d'information...

Gaëtan DAUTOIS (ARTELIA): gaetan.dautois@arteliagroup.com

Laurent PEYRAS (INRAE) : <u>laurent.peyras@inrae.fr</u>

CIEL & TERREINTERNATIONAL

SÉCURITÉ DES PARCS PV FLOTTANTS

COMMENT ASSURER LA PÉRENNITÉ DES PROJETS?

- 1. À propos de C&T
- 2. Les données d'entrée
- 3. Le bon dimensionnement
- 4. La mise en œuvre

À PROPOS DE CIEL & TERRE

NOTRE HISTOIRE

Création de Ciel & Terre

La société a été fondée par Bernard Prouvost, un entrepreneur convaincu de la nécessité d'innover dans le secteur des énergies renouvelables et désireux de développer des installations solaires sur les toits.

2006

2010

Développement de la technologie Hydrelio®

Depuis, nous nous consacrons entièrement à l'énergie solaire flottante.

Première centrale FPV à l'échelle du MW

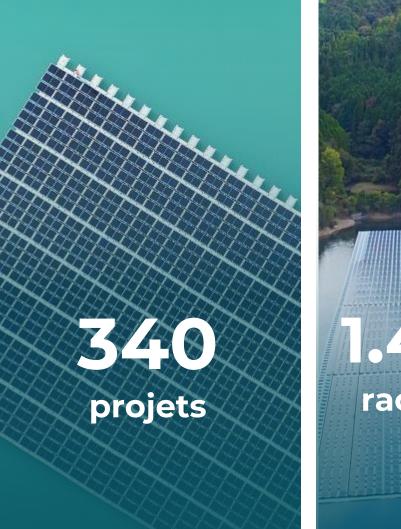
Okegawa, Japon

2013

Ciel & Terre s'exporte à l'international

- 2013: Japon
- 2015 : Corée du Sud Techwin Co.
- 2016 : Ltd in Ciel & Terre USA and Ciel & Terre Taiwan
- 2018: Ciel & Terre Inde

Ilots Blandin (72 Mw) : la plus grande centrale FPV en Europe


2024

Premier Gigawatt franchi

2023

2GWp

Installés et en construction

15 ans

dédiés au solaire flottant

200

Ciel & Terriens

CIEL & TERRE

Bureaux à travers

Centre de tests en Inde

2

le monde

Équipes R&D produits et ancrage (France)

7

Brevets déposés

Alexis GAVEAU

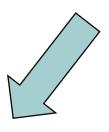
CEO

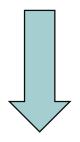
Stéphane PROUVOST

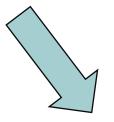
Products & services director

Daphnée BOUQUET

Deputy Products & services director



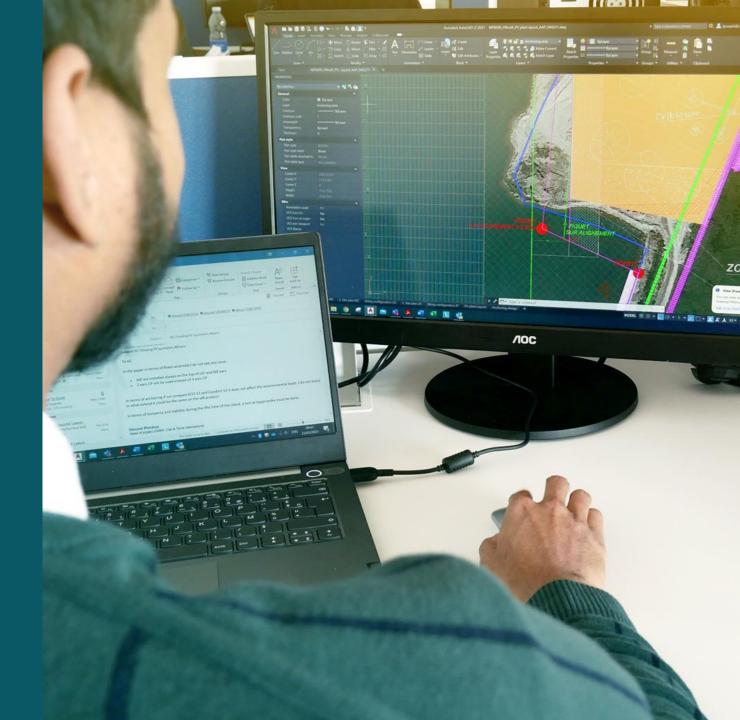




Pérennité des projets?

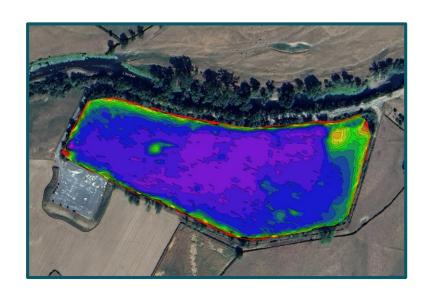
Comment rendre pérenne un projet solaire flottant Hydrelio®?

Proposer une technologie éprouvée


Installer le système d'ancrage adéquat

Assurer un montage par nos équipes formées

LES DONNÉES D'ENTRÉE ET LE BESOIN CLIENT


Données d'entrée et le besoin client

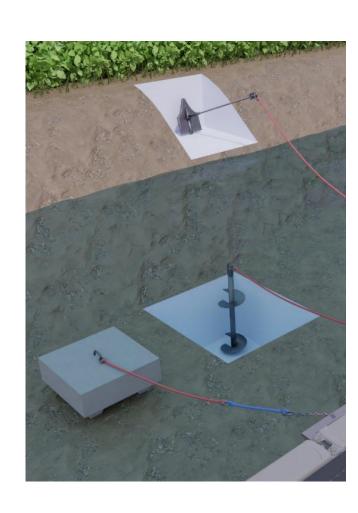
LES DONNÉES

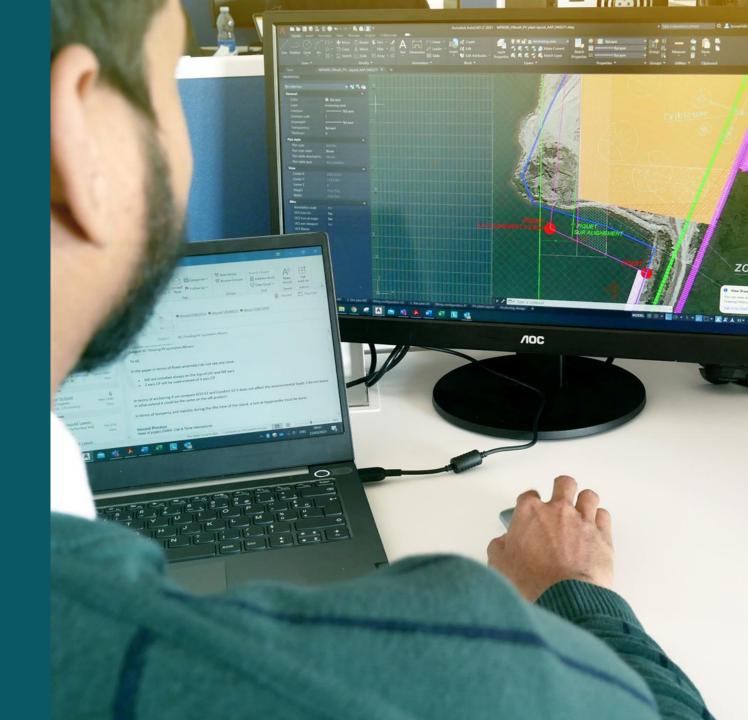
- Vent (pression dynamique)
- Vague
- Vitesse du courant
- Profondeur d'eau
- Variation de niveau d'eau
- Type de réservoir
- Etude Géotechnique
- Bathymétrie
- Qualité de l'eau
- Contraintes environnementales
- Contraintes chantier (accessibilité mise à l'eau, zone de stockage)

LE BESOIN

- Choix du module PV
- Puissance du projet

Données d'entrée et le besoin client


DONNÉES + BESOIN


Choix de la bonne technologie :

- Flottante
- Système d'ancrage

LE BON DIMENSIONNEMENT

Un bon dimensionnement

- Les données d'entrée
- → Choix technologie flottante
- → Choix de la technologie d'ancrage

Le dimensionnement mécanique du projet et de son système d'ancrage

Limites produits

Règles d'ancrage


Les règles de design

Un bon dimensionnement

- Limites produits:
 - Limites intrinsèques des composants de l'Hydrelio® (flotteurs, fixation)
 - Issues de différents types de tests :
 - Tractions des oreilles
 - Cisaillement des clefs de connexion
 - Fatigue
 - Brouillard salin
 - Issues de simulation CFD et de wind tunnel tests :
 - Coefficients aérodynamiques des flotteurs

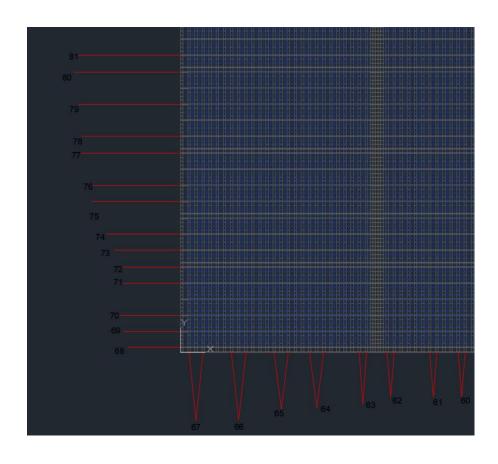
Un bon dimensionnement

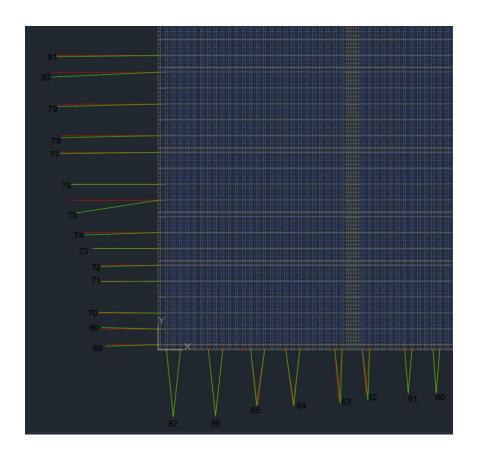
Règles d'ancrage :

- Assurent une bonne répartition des efforts environnementaux autour de la centrale flottante
- Issues des limites produits
- Issues de certains cadres normatifs (Eurocode, BV NR-493)
- Issues de tests réalisés sur notre site de tests (compression, allongement, etc...)
- Basées sur un REX de 10 ans de centrales raccordées au réseau :
 - Evolution de la technologie flottante
 - Evolution des outils de dimensionnement
 - Accidents de certaines centrales (8D + capitalisation)

LA MISE EN ŒUVRE DES SOLUTIONS D'ANCRAGE

LA MISE EN ŒUVRE


LA MISE EN ŒUVRE


LA MISE EN ŒUVRE

Design théorique

Design as-built

- Reprise des coordonnées GPS des ancres
- Redimensionnement avec coordonnées réelles

CONTACT CONTACT CONTACT CONTACT

Alexis CONSTANTEMEA SALES MANAGER

aconstant@cieletterre.net

Elena AVCHARYAN

EMEA SALES ASSISTANT

eavcharyan@cieletterre.net jbore

TERRE
THE FLOATING SOLAR COMPANY

Julien BORELLO

EMEA SALES DEVELOPER

jborello@cieletterre.net

+33 3 20 01 05 65

100 avenue Harrisson FRANCE

ciel-et-terre.net

Sécurisation des Parcs PV Flottants

FRANCOIS CHEVALIER, GERANT

Novembre 2025

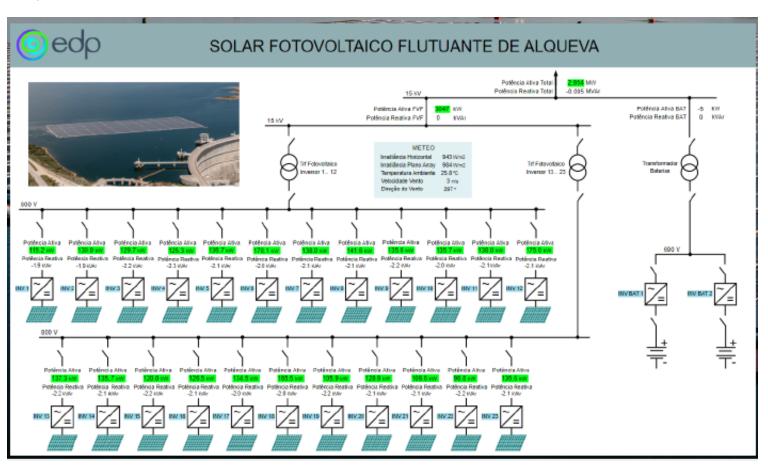
Les 4 Solutions d'Ancrages pour PV Flottant

ANCRES ACTIVES



PIEUX BATTUS

Monitoring & Surveillance à valeur ajoutée


- 1. Les centrales photovoltaïques flottantes, agri PV et les ombrières connaissent un développement mondial plus fort que les centrales classiques
- 2. La performance et la durabilité de ces centrales dépendent plus particulièrement de l'intégrité mécanique de leurs structures
- 3. Kapteva a développé des solutions intelligentes pour répondre à ces enjeux pour des centrales existante et à installer pour réduire le LCEO et éviter des incidents majeurs:
 - Capter les données de façon économique, analyser les données brutes grâce des algorithmes et conseiller pour optimiser
 - Preuve du concept établie via une collaboration avec EDF Lazer
 - Intérêt confirmé des acteurs du marchés
 - Equipe expérimentée et capital intellectuel préparé

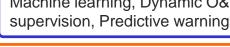
Intégrité structurelle: Valeur ajoutée positive

Monitoring aujourd'hui:

- Monitoring systématique de la production PV
- Pas d'équivalent pour l'intégrité structurelle:
 - Coût d'acquisition des données trop élevé
 - Couverture limitée
 - Interfaces de capteur non compatibles
 - Pas de système d'interface O&M

KAPTEVA

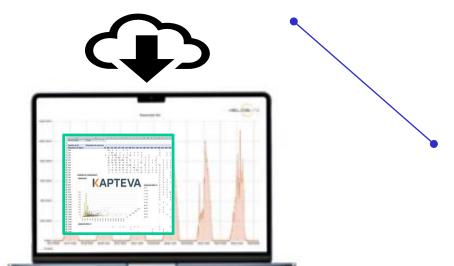
3 enablers = Game changing solution



Weather

1) Cost-effective data-logger Self-powered, wireless, plug & play with HMI, compatible with most sensors

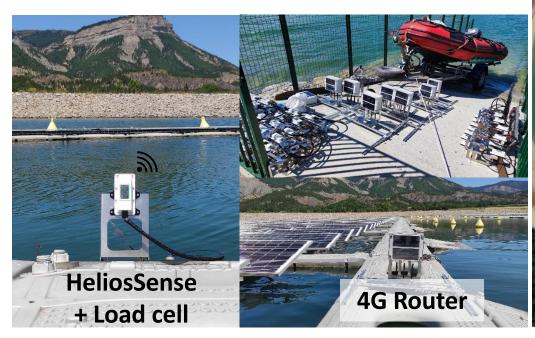
2) More value from Data Machine learning, Dynamic O&M supervision, Predictive warnings

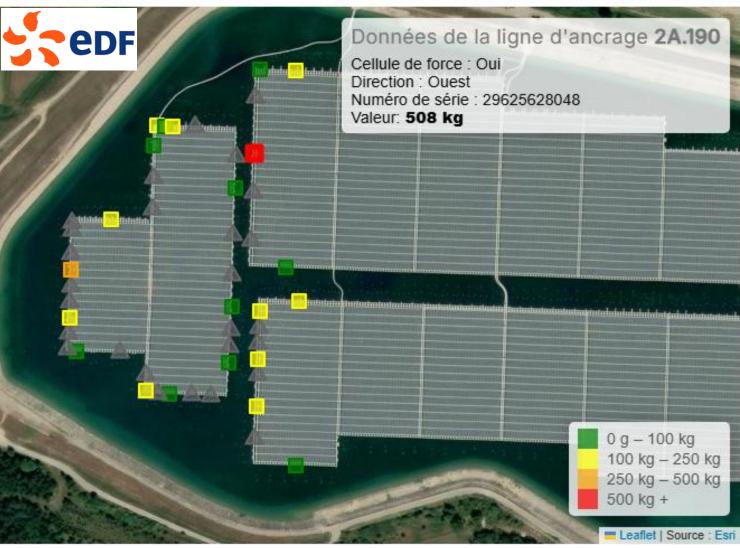


Anchor line tension, waves, surface current, water height

3) Expertise for tailored solutions

Mechanical stability

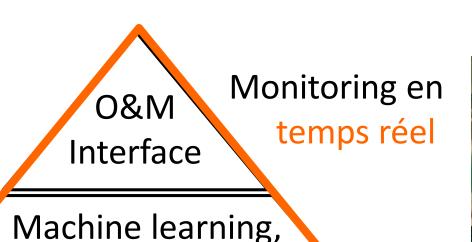



O&M Monitoring solution

Outil digital O&M:

- Multiples données
- Permanent, en ligne, temps reel avec alertes
- Présentation cartographique

Solutions pour le monitoring des centrales F-PV

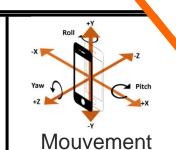

Acteurs du marché

AMP: pas d'offre

Recherche

Consultants

Offres séparées


Acquisition & consolidation de data

Force

Vagues

Vente

Jumeau numérique

KAPTEVA

Wireless
Data-logger

Votre choix de capteurs

KAPTEVA

Solutions & Needs

Solutions@Kapteva

Weather:

- Wind direction and speed
- Temperature, humidity
- Sunshine

Water bodies:

- Waves (frequency, amplitude, direction)
- Water level tidal range
- Surface current (T2 2026)

Floating PV plant:

- Dynamic mapping of anchor line tension
- PV voltage & current
- Displacement & deformation of the plant (T4 2026)

Force

Other possibilities:

- Water quality (turbidity oxygen, temperature, pH,...)
- Tailored alerts

<u>Needs</u>

Phase & Objectives

Prospection:

 Project site conditions well characterized

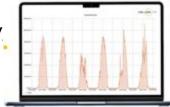
Construction:

- Resistance of temporary anchor lines
- Compliance with permissible charges
- Anchor loads balanced

Commissioning:

- Well-adjusted lines and/or wellpositioned anchors
- Imbalances rectified without island deformation

Exploitation:


- Resistance: storms, tidal range, surface current
- Water quality monitoring

Rebalancing:

- Controlled procedure
- Imbalances detected

Stakes

- Best technology choice
- Correct anchor sizing
- Less breakage, continuous monitoring
- OEM warranty maintained
- Good on the 1st try
- Validate the execution of the mooring by the EPC
- Less time
- Independent compliance verification
- Continuous monitoring
- Less visual inspection
- Targeted interventions
- Reduce insurance cost
- Fewer interventions
- Less time par intervention
- Results verified

Portail de monitoring

© 2025 Kapteva SAS, Proprietary and confide

Mesures d'amplitude des vagues sur centrales FPV

Capteur de vague HeliosWave:

5 capteurs déployés 4 clients différents

V2 nouvelles fonctionnalités :

- modem 4G intégré
- anémomètre + girouette ultrason
- mesure du courant de surface

Suivi du marnage:

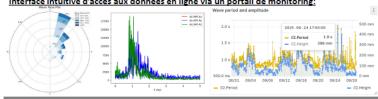
Capteur de pression permettant de mesurer la hauteur de la colonne d'eau.

Plage de mesure: 0-15m

Précision: < 1 cm

Fiche technique Version V2:

- Mesure l'amplitude, la période et la direction de propagation des vagues
- Communication sans fils en 4G
- Autoalimenté par 3 cellules solaire + batterie Li-ion
- Accéléromètre 6 axes intégré
- Campagnes de mesures en haute fréquence déclenchables sur seuil
- Algorithme embarqué de traitement des données en temps réel (FFT)
- Génération d'alertes automatiques
- · Accès aux données en ligne via un portail de monitoring


Capteurs et mesures en option

- Anémomètre + girouette ultrason
- Mesure du courant de surface

Application : Station intégrée de mesure environnementales pour centrales solaires flottantes. Données brutes + spectres fréquentiels disponibles sur demande en haute fréquence. Algorithme embarqué de calcul de la direction, période et amplitude des vagues.

Spécifications techniques		
Dimensions	Diamètre 270 mm / Hauteur 400mm (650 mm avec anémomètre)	
Poids	4 kg	
Tension d'alimentation	4V généré par 3 cellules solaires photovoltaïques de 0.5W	
Connection	Bluetooth + 3G/4G	
Fréquence d'échantillonnage	10 Hz	
Précision des mesures	<±1 cm (2σ P95%)	

Interface intuitive d'accès aux données en ligne via un portail de monitoring:

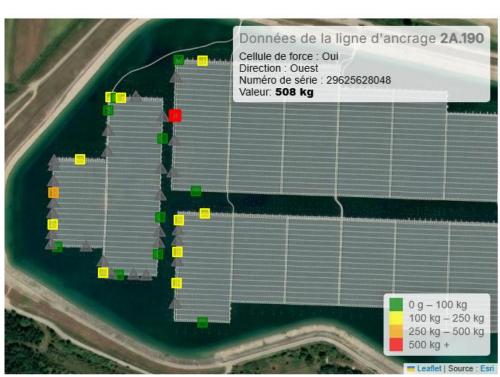
Kapteva conçoit des enregistreurs de données autonome et des solutions de monitoring permettant d'assurer la surveillance active de l'intégrité mécanique des structures de support des centrales photovoltaïques

Nouvelle version du capteur de vague HeliosWave

	HeliosWave V1	HeliosWave V2	
Connection internet	Via un routeur 4G externe	Modem 4G intégré	
Mémoire de stockage	1 Mo	1 Go	
Accéléromètre	3 axes	6 axes	
Compas (orientation)	-	Compas électronique intégré	
Vitesse du vent	-	Anémomètre + girouette ultrason	
Courant de surface	-	En option	
Poids total de la bouée	10 kg	4 kg	
Arrimage	1 anneau + barre d'arrimage	2 anneaux d'arrimage	

Offre de monitoring ajustée selon les besoins du Client

<u>Phase</u>	<u>Durée</u>	<u>Enjeux</u>	Réponse <u>Kapteva</u>	Full time	On time
Prospection	12 à 24 mois	Caractérisation environnemental du site	Mesures certifiés	0	
Mise en service	2 à 24 mois	Conformité & Recours aux garanties	Mesures certifiés	©	(2)
Opérationnel	30 ans	Performance: Meilleure disponibilité, Maintenance préventive, Contrôle post incident	Monitoring permanent ponctuel	O	
Corrective	1 à 2 mois X fois sur 30 ans	Conformité de réparations Recours aux garanties	Mesures certifiés	©	


Full time : premium & récurrent en achat ou location

On time : ciblé & ponctuel en location ou achat

Solutions intelligentes pour réduire le LCOE et des risques

STEWART Founded by CETPartnership and co-founded by the European Union

Enjeux d'inondation

L'importance d'une bonne prise en compte des risques et d'une approche technique et standardisée

Benoat Danglade

27/11/2025 – Grenoble – **Sécurité des parcs PV flottants**

Sommaire

- 1. Présentation d'OWC (ex-Innosea)
- 2. Opportunités et enjeux dans les lacs de carrière
- 3. Zones inondables description et contexte règlementaire
- 4. Projets renouvelables dans les zones inondables Comment développer le solaire flottant en maîtrisant les risques ?
- 5. Points importants à retenir

Expérience résumée

> **160** études

> 85 fermes

> 4 500 MWc

Since 2017

Indonésie	Laos		
Inde	Roumanie		
Portugal	Togo		
France			
Seychelles			
Afghanistan			
Ouganda			

Ciel & Terre SunGrow NRG Island Isifloating HelioRec SolarDuck

- **+45** projets sur des barrages hydroélectriques, retenues ou d'irrigation (> 3500 MWc)
- 50 projets sur des lacs de carrière (> 800 MWc)
- 15 projets en zone portuaire, côtière ou en mer (>270 WWc cumulés)
- 5 projets européens de R&D sur la performance et la durabilité des fermes solaires flottantes

Solaire flottant – offre de services

Calendrier de développement ~3 à 5 ans Prospection Faisabilité Concept Permis Avant projet Projet détaillé

OWC intervient dans toutes les phases de conception et de développement auprès des producteurs indépendants d'électricité, des propriétaires, des institutions financières internationales, des EPCs. En tant qu'assistance à maîtrise d'ouvrage, d'ingénierie indépendante ou conseil technique.

Études de marché		
Sélection de sites		
Visites de site		
Caractérisation de		
sites		
Stratégie de		
développement		

Sélection des équipements
Spécifications techniques
Planning de développement
et d'installation
Stratégie O&M
Coût de l'énergie
Démantèlement

Rédaction d'appel d'offre
technique (gestion du
projet, stratégie
d'allotissement,
Dimensionnement, Requis
techniques)
Support et évaluation des
consultations

Ingénierie détaillée

Dimensionnement système d'ancrage

Méthodes d'installation

Géoscience

Assistance à maîtrise d'ouvrage

Supervision et conseil

Revue tierce indépendante

Technical due diligence

Expertise technique: solaire flottant, hydrodynamique, hydraulique, géoscience, électrique, opérations et supervision sur site

Solaire flottant – large diversité de plans d'eau

- Plan d'eau artificiels:
 - Ancienne carrière
 - Barrage hydroélectrique
 - Retenue collinaire, d'irrigation
 - Réservoir industriel
 - Aquaculture
 - Zone portuaire
 - ...
- Plan d'eau naturels
 - En mer
 - Zone côtière
 - Lagon
 - Lac naturel

FIGURE 3.4. FPV system (of 305 kWp capacity) in Goias, Brazil

Source: © Ciel & Terre Internation

Source: © Kyocera TCL Solar LL

Segmentation par complexité de site

Petits plans d'eau - reservoir industriels, retenue collinaire, lac de carrière, bassin d'irrigation,... (5-20MWc ~ 5-20 Hectares)

France, Piolenc, 2019, 17MWp + Extension of 5 MWp in 2022 Akuo, Ciel&Terre

Sellingen, 41.1 MWp, 2022 Baywa r.e, Zimmermann

Grands plans d'eau – barrage hydroélectrique ou grand réservoir,... (50-200MWp – 50-200 Hectares)

Portugal, Alto Rabagão, 220 kWp, 2017 EDP, Ciel & Terre

Indonesia, Cirata, 145 MWp, 2023 Masdar, Sungrow

Zone côtière / en mer (eau libre, bras de mer, zone portuaire, lagon)

France, Heliorec Brest (25 kWp)

France, SolarInBlue, SunSète (20 kWp)

Lacs de carrière typiques

Petits lacs de carrière

Peyssies, 5 MWp, 2021 Urbasolar, Sungrow

Amer Central, 6.3 MWp, 2022 RWE, ProFloating

France, Montpezat, 5 MWp, 2022 Amarenco, Ciel&Terre

Grands lacs de carrière

France, Piolenc, 2019, 17MWp + Extension of 5 MWp in 2022 Akuo, Ciel&Terre

France, Peyrolles-en-Provence, 2021, 15MWp Boralex, NRG

Sellingen, 41.1 MWp, 2022 BayWa r.e., Zimmermann

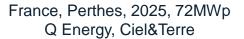
France, Perthes, 2025, 72MWp Q Energy, Ciel&Terre

Lacs de carrière typiques

Petits lacs de carrière

Avantages:

- Conditions simples
- Réservoirs artificiels
- Accès facilité pour la construction et maintenance
- Peu de contraintes sociales
- Peu d'infrastructures sensibles à proximité directe
- Beaucoup de projets construits → maturité technologique et commerciale

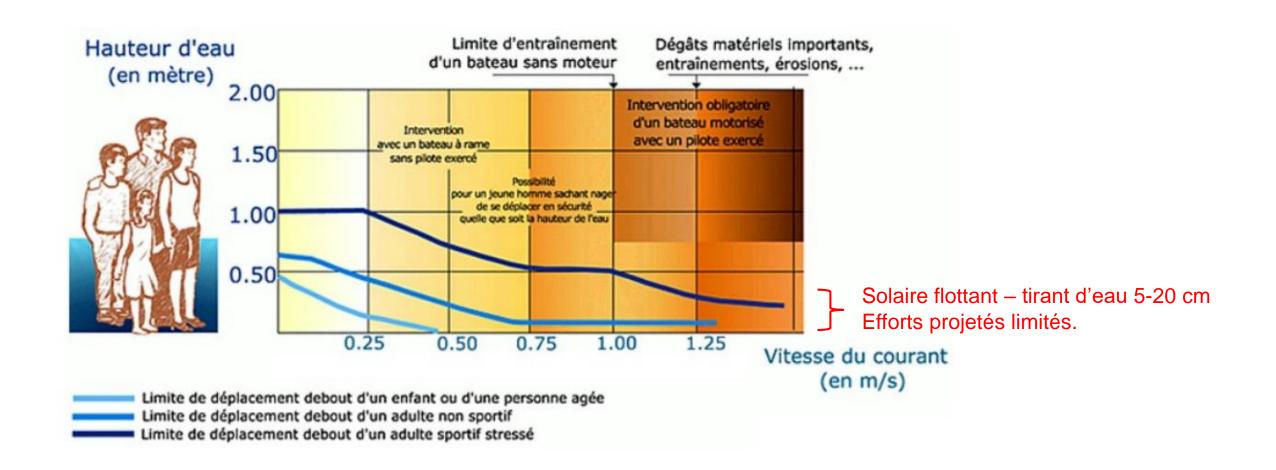


Risques:

- Enjeux environnementaux
- Zones inondables carrière dans les zones alluvionnaires et donc dans le lit majeur
- Variation du niveau d'eau non contrôlées (eaux souterraines – lien avec nappes et lit mineur)

Sellingen, 41.1 MWp, 2022 BayWa r.e., Zimmermann

France, Piolenc, 2019, 17MWp + Extension of 5 MWp in 2022 Akuo, Ciel&Terre

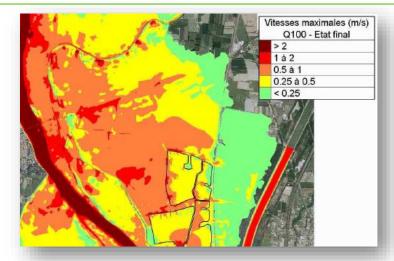

Risques naturels et enjeux règlementaires

- Le Plan de Prévention des Risques d'Inondation (PPRI)
 - Plan règlementaire annexé au plan local d'urbanisme, approuvé par arrêté préfectoral et établi par les services de l'Etat.
 - Définition de règles d'urbanisation dans les zones soumis aux submersions marines ou débordements de rivières.
 - À la suite de l'établissement d'une cartographie et d'un règlement définissant les risques = rencontre de l'aléa (hauteur d'eau et vitesse d'écoulement) avec un enjeu (les personnes et les biens)
- Objectifs du PPRI
 - Limiter voire interdire les nouvelles installations dans les zones à risques
 - Ne pas augmenter la vulnérabilité des biens dans les zones à risques
 - · Garantir la sécurité des personnes et des biens
- Assurer le libre écoulement et préserver les champs d'expansion des crues
- Chaque PPRI est spécifique (règlement, exceptions, données, études et précisions, historiques des évènements,...)

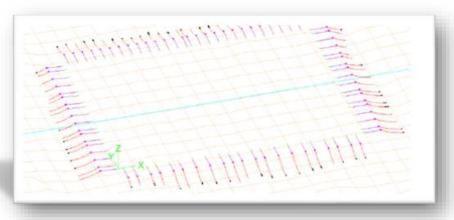
Risques naturels et enjeux règlementaires

Projets renouvelables dans les zones inondables

- Dans le cadre d'un projet solaire flottant
 - Dans les zones inondables à aléas forts à très forts, il est souvent **interdit de construire** quelconque nouveau bâtiment, sauf exceptions.
 - Dans les autres zones il est souvent recommandé de **prouver la bonne tenue de l'installation face aux aléas** (vitesse d'écoulement, hauteur d'eau, corps flottants).
 - Les projets solaires flottants ou parcs photovoltaïques ne sont pas toujours explicitement couverts dans les règlements.
- Bonnes pratiques pour un développeur
 - Lors de la prospection d'un projet flottant, bien identifier le zonage du PPRI si existant
 - Se rapprocher des services instructeurs cadrage
 - Se faire accompagner par des bureaux d'études dédiés pour répondre aux exigences règlementaires
- Les enjeux de développement des énergies renouvelables sont aussi d'intérêt général:


LOI n°2023-175 du 10 mars 2023 relative à l'accélération de la production d'énergies renouvelables

- Vise à simplifier les procédures d'autorisation des projets d'énergies renouvelables
- Réduction des temps d'instruction, mobiliser les terrains déjà artificialisé, élus impliqués dans la définition des zones.
- Le solaire flottant entre souvent dans cette dynamique



Comment étudier les enjeux d'inondations pour mon projet flottant?

- Quantifier le risque
 - avec une étude hydraulique qui étudiera et modélisera
 - Les évènements extrêmes, les vitesses écoulement, les directions, les durées, le type de crue, les débris flottants
 - Infrastructures à proximité: digues, canaux, pouvant créer des cas de chargement supplémentaires
 - avec une étude d'ancrage qui étudiera la tenue d'un système flottant vis-à-vis de évènements extrêmes
 - Définition des cas de chargements et des efforts à reprendre
 - Dimensionnement des flotteurs, des lignes d'amarrage et des ancres
- Quand réaliser les études ? À définir avec les services instructeurs
 - En amont de l'instruction au permis si projet en zone à forts enjeux
 - Après l'instruction si projet en zone à enjeux faibles ou modérés
- Conséquences des études prouver la compatibilité avec le PPRI
 - Evitement → Privilégier les zones sans courant en ajustant le plan de masse
 - Réduction → Choix des équipements (flotteurs, lignes, ancres), surdimensionnement, entretien des rives, inspections digues, flotteurs et ancrage, mise en place de protection supplémentaires (systèmes anti-embâcles)
 - Utilisation des résultats pour le dimensionnement final des structures

Exemple d'étude hydraulique, vitesses d'écoulement Q100

Exemple d'étude d'ancrage, lignes d'amarrage en rouge

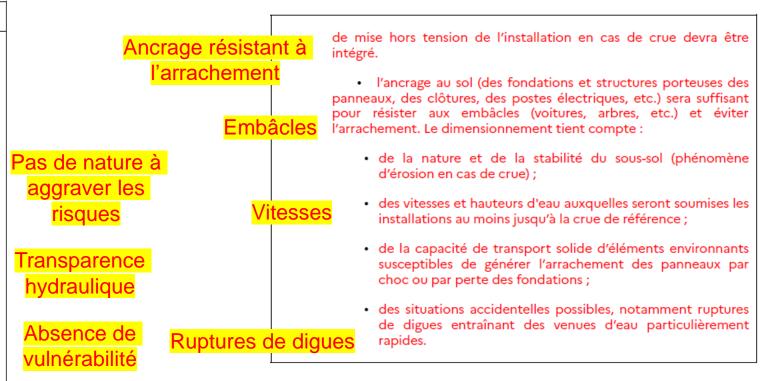
Evolution des règlements et structuration de l'approche

- Adaptation des règlements du PPRI, exemple PPRI du Rhône, modification du 15 juillet 2025
 - Ajout de dispositions spécifiques à l'activité agricole et à la production d'énergie renouvelable

Extrait du règlement du Rhône modifié

Chapitre 2 – Dispositions spécifiques à l'activité agricole et à la production d'énergie renouvelable

Article 1 – Sont admis sous conditions, par exception au chapitre 1


✔ L'extension des bâtiments à destination agricole existants (hors logement et serre cathédrale), à condition :

(...)

✓ Les installations de production d'énergie solaire sont admises aux conditions suivantes

Le demandeur devra établir, par des études spécifiques, que le projet n'est pas de nature à aggraver les risques, au moins jusqu'à la crue de référence :

- en recherchant l'absence d'impact sur la ligne d'eau et la transparence hydraulique maximale de l'installation (y compris les clôtures) quelles que soient les circonstances de crue (embâcles, rupture de digue...).
 L'installation ne devra pas aggraver l'aléa sur l'ensemble des enjeux existants à sa proximité, en amont, en aval et sur la rive opposée;
- en démontrant l'absence de vulnérabilité du projet lui-même y compris dans les situations les plus défavorables (embâcles, rupture de digue, mobilité du lit vif...). A ce titre, l'installation devra notamment respecter les prescriptions suivantes :
 - l'ensemble des éléments sensibles (panneaux, postes de relevé, connectiques afférentes...) devra être implanté au-dessus de la cote de référence en tenant compte des éventuels éléments solides flottants pouvant être transportés par le cours d'eau;
 - les modalités de protection et d'entretien devront tenir compte du caractère inondable du site, en particulier, un dispositif

Points importants à retenir – projets solaires flottants dans des zones inondables

- Le solaire flottant est une technologie mature techniquement et commercialement.
- Beaucoup de projets se trouvent dans des lacs de carrière où l'enjeu inondation est souvent le seul critique techniquement (pas de combinaison de risques).
- Le PPRI et les services instructeurs sont à l'écoute d'une démarche scientifique, quantitative et adaptée aux enjeux du site.
- Les sujets sont multiples (hauteur d'eau, écoulement, rupture de digue, embâcles) et doivent être anticipés par les développeurs.
- La bonne prise en compte des enjeux d'inondation permet au développeur de répondre aux enjeux règlementaires, mais aussi de maîtriser les risques de développement et d'exploitation, d'investissement et d'assurabilité de sa centrale.

Solaire Photovoltaïque Flottant

Enjeux de la montée en compétence

PLATEFORME FORMATION & ÉVALUATION

Présentation de l'INES

- Institut National de l'Energie Solaire créé en 2005
- ▶ 500 salariés sur 22 000m² de campus (laboratoire, bureaux, plateforme de tests...)

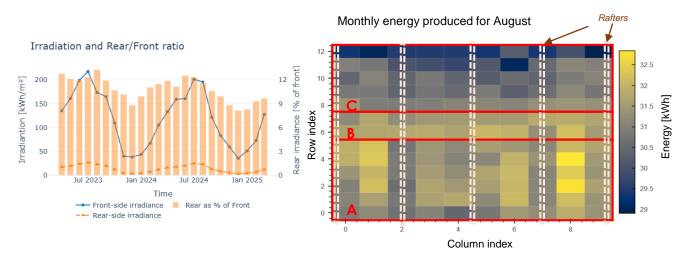
Pôle Recherche & Innovation

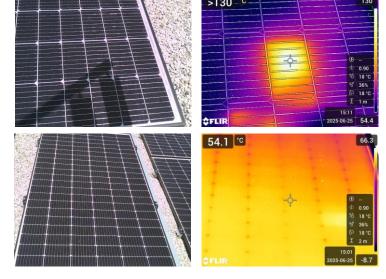
- > 350 chercheurs
- +60 brevets/an
- 14 laboratoires

Pôle Formation & Expertise

- 35 salariés, 15 experts-formateurs
- Formations & expertises techniques
- Conférences & projets

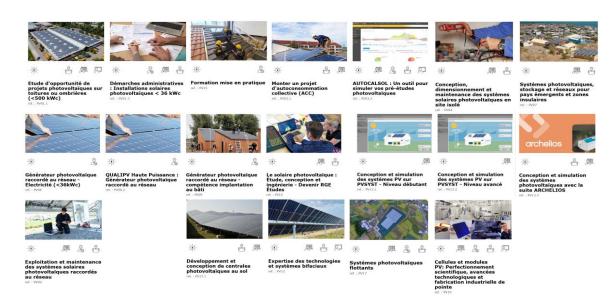
INES-PFE – Association loi 1901





Prestations d'expertise PV

- Accompagnement lors de lancements d'activités
- Audits de centrales (thermographie, conformité, caractéristiques)
- Conseils techniques auprès des professionnels (technologies, design, ...)
- Analyse de données (performance, vieillissement, pertes spécifiques)


Audits de centrales PV en Haute-Savoie (2025)

Qualiopi

Catalogue des formations PV

- Conseil, dimensionnement, installation, exploitation, maintenance, ...
 - 35 formations PV au <u>catalogue</u> (présentiel, classe-virtuelle, e-learning)
 - o 2 000m² de plateaux techniques et pédagogiques
 - Formations courtes, longues, certifiantes, sur-mesure

Thématique du solaire flottant

- Formation PV flottant 3 journées techniques
 - Développement / Dimensionnement / Réalisation
 - Viste d'une centrale FPV (Montmélian)
 - Intervenants multiples (ancrage, enjeux enviro.)

- 8 sessions organisées depuis 2022

 - Une diversité de profils parmi les participants (max. 12 / session)

Collectivités territoriales

Bureaux d'études

Développeurs

EPCistes

Observations de la filière

- Ouverture d'un « portefeuille flottant » chez beaucoup de dév.
- Professionnalisation croissante
- Spécificité du productible FPV
- Attentes sur les REX en phase chantier et phase exploitation
- Diversification des modèles de valorisation du kWh solaire

Merci pour votre attention

Antoine DIZIER – Expert photovoltaïque

antoine.dizier@ines-solaire.org

Howden Group

Chiffres clés Groupe

1994

créé à Londres par David Howden

3mds £

de chiffre d'affaires

45mds \$

de primes gérées par Howden Group

22 000+

collaborateurs

Nos implantations dans le monde

300 bureaux

115+ pays couverts

dont 55 directement

et 50 via Howden One

FOCUS SUR LE MARCHE DE L'ASSURANCES POUR LES PPV FLOTTANTS

Nous rassemblons des techniciens reconnus pour leur expertise et expérience au bénéfice entreprises du secteur de l'Energie

Quelles activités?

- Fabricant
- Exploitant

Quelles localisations?

- Offshores
- Plans d'eau artificiels et naturels.

Nos références?

- Concepteurs et producteurs local de production pour l'eau et l'énergie verte, France
- Chantiers, montage essai, Pays-Bas
- Offshore, Japon, Finlande, UK, USA, Pologne, Asie, Taiwan.

Merci pour votre attention!

Restons en contact

Valentin MAILLOT

Chargé de mission Innovation Valentin.maillot@tenerrdis.fr
07 71 44 40 30

Quentin MOREL

Chargé de communication <u>Quentin.morel@tenerrdis.fr</u> 06 18 38 03 19

